87 research outputs found

    Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion

    Get PDF
    The mechanism of skeletal myoblast fusion is not well understood. We show that endogenous nitric oxide (NO) generation is required for myoblast fusion both in embryonic myoblasts and in satellite cells. The effect of NO is concentration and time dependent, being evident only at the onset of differentiation, and direct on the fusion process itself. The action of NO is mediated through a tightly regulated activation of guanylate cyclase and generation of cyclic guanosine monophosphate (cGMP), so much so that deregulation of cGMP signaling leads to a fusion-induced hypertrophy of satellite-derived myotubes and embryonic muscles, and to the acquisition of fusion competence by myogenic precursors in the presomitic mesoderm. NO and cGMP induce expression of follistatin, and this secreted protein mediates their action in myogenesis. These results establish a hitherto unappreciated role of NO and cGMP in regulating myoblast fusion and elucidate their mechanism of action, providing a direct link with follistatin, which is a key player in myogenesis

    Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival

    Get PDF
    Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia

    The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells

    Get PDF
    SummaryStem cells undergo a shift in metabolic substrate utilization during specification and/or differentiation, a process that has been termed metabolic reprogramming. Here, we report that during the transition from quiescence to proliferation, skeletal muscle stem cells experience a metabolic switch from fatty acid oxidation to glycolysis. This reprogramming of cellular metabolism decreases intracellular NAD+ levels and the activity of the histone deacetylase SIRT1, leading to elevated H4K16 acetylation and activation of muscle gene transcription. Selective genetic ablation of the SIRT1 deacetylase domain in skeletal muscle results in increased H4K16 acetylation and deregulated activation of the myogenic program in SCs. Moreover, mice with muscle-specific inactivation of the SIRT1 deacetylase domain display reduced myofiber size, impaired muscle regeneration, and derepression of muscle developmental genes. Overall, these findings reveal how metabolic cues can be mechanistically translated into epigenetic modifications that regulate skeletal muscle stem cell biology

    Essential Role of SIRT1 Signaling in the Nucleus Accumbens in Cocain and Morphine Action

    Get PDF
    Sirtuins (SIRTs), class III histone deacetylases, are well characterized for their control of cellular physiology in peripheral tissues, but their influence in brain under normal and pathological conditions remains poorly understood. Here, we establish an essential role for brain reward region. We show that chronic cocain administration increases SIRT1 and SIRT2 expression in the mouse NAc, while chronic morphine administration induces SIRT1 expression alone, with no regulation of all other sirtuin family members observed. Drug induction of SIRT1 and SIRT2 is mediated in part at the transcriptional level via the drug-induced transcription factor ΔFosB and is associated with robust histone modifications at the Sirt1 and Sirt2 genes. Viral-mediated overexpression of SIRT1 or SIRT2 in the NAc enhances the rewarding effects of both cocain and morphine. In contrast, the local knockdown of SIRT1 from the NAc of floxed Sirt1 mice decreases drug reward. Such behavioral effects of SIRT1 occur in concert with its regulation of numerous synaptic proteins in NAc as well as with SIRT1-mediated induction of dendritic spines on NAc medium spiny neurons. These studies establish sirtuins as key mediators of the molecular and cellular plasticity induced by drugs of abuse in NAc, and of the associated behavioral adaptations, and point towards novel signaling pathways involved in drug action

    FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age

    Get PDF
    Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.The authors acknowledge funding from MINECO-Spain (grant no. RTI2018-096068), ERC2016-AdG-741966, LaCaixa-HEALTH-HR17-00040, MDA, UPGRADE-H2020-825825, AFM and DPP-Spain to P.M.-C; MarĂ­a-de-Maeztu-Program for Units of Excellence to UPF (grant no. MDM-2014-0370) and the Severo-Ochoa-Program for Centers of Excellence to CNIC (grant no. SEV-2015-0505). This work was also supported by NIAMS IRP through NIH grants nos AR041126 and AR041164 to V.S. and utilized computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov); ASI, Ricerca Finalizzata, Ateneo Sapienza to A.M.; AIRC (grant no. 23257); ASI (grant no. MARS-PRE, DC-VUM-2017-006); H2020-MSCA-RISE-2014 (645648) to M.S. and a FNR core grant (grant no. C15/BM/10397420) to A.d.S. L.G.P. was partially supported by an FPI fellowship and an EMBO fellowship (grant no. ALTF 420-2017); and S.C., X.H. and V.M. by FI, Severo-Ochoa and PFI Fellowships (Spain), respectively

    Mir-214-Dependent Regulation of the Polycomb Protein Ezh2 in Skeletal Muscle and Embryonic Stem Cells

    Get PDF
    Arthur Manuscript date: 2010 October 9Polycomb group (PcG) proteins exert essential functions in the most disparate biological processes. The contribution of PcG proteins to cell commitment and differentiation relates to their ability to repress transcription of developmental regulators in embryonic stem (ES) cells and in committed cell lineages, including skeletal muscle cells (SMC). PcG proteins are preferentially removed from transcribed regions, but the underlying mechanisms remain unclear. Here, PcG proteins are found to occupy and repress transcription from an intronic region containing the microRNA miR-214 in undifferentiated SMC. Differentiation coincides with PcG disengagement, recruitment of the developmental regulators MyoD and myogenin, and activation of miR-214 transcription. Once transcribed, miR-214 negatively feeds back on PcG by targeting the Ezh2 3′UTR, the catalytic subunit of the PRC2 complex. miR-214-mediated Ezh2 protein reduction accelerates SMC differentiation and promotes unscheduled transcription of developmental regulators in ES cells. Thus, miR-214 and Ezh2 establish a regulatory loop controlling PcG-dependent gene expression during differentiation.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Intramural Research Program

    Dietary Restriction: Standing Up For Sirtuins

    Get PDF
    We believe that L. Fontana, L. Partridge, and V. D. Longo should have included a discussion of sirtuins in their Review “Extending healthy life span—From yeast to humans” (16 April, p. 321). We also believe that some of the references used are misleading. The authors state that the purpose of their Review is to “consider the role of nutrient-sensing signaling pathways in mediating the beneficial effects of dietary restriction.” Yet there was no mention of the sirtuins, a family of critically important nutrient-sensing proteins that promote health span from yeast to mammals, as shown by more than 1000 peer-reviewed publications from labs around the world. The authors state that “[i]t is unlikely that a single, linear pathway mediates the effects of dietary restriction in any organism,” and we agree. Indeed, the aging field now recognizes that healthy life span is under the influence of several nutrient-sensing pathways, and there is at least as much evidence for the involvement of sirtuins in the dietary restriction response as for any of the pathways discussed in the Review
    • …
    corecore